Friday, November 29, 2019

Is the creature in frankenstein Adam or Satan free essay sample

Is the creature in Frankenstein Adam or Satan ? In Frankenstein, Mary Shelley , one of the big questions is: Is Frankensteins creature in Adam or Satan Ill answer this question in this essay I will begin to show the similarities that the creator of Adam and Satan. We will see that it has more links with Adam until the discovery of its creator. Finally, I show that the creature is more victim than bad person . As Adam, Frankensteins monster is the first of its kind created by another being. The creation of the monster was almost synonymous with he creation of Adam , Like Adam , I am apparently united by no link to any other being in existence. Monster , like Adam, had not the choice that is and what they do. Adam fell from the grace of God. creature at the first breath fell from the grace of Frankenstein. creature wants acceptance from his father and seeks . We will write a custom essay sample on Is the creature in frankenstein Adam or Satan? or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page It is lonely and looking for a partner . It is only through education saying that the creature is given , starting from a life of innocence and ignorance , he tries to survive in a hostile world that becomes like Satan. l am rather the fallen angel , you drivest Joy without fault. Everywhere I see bliss, I am the only irrevocably excluded. I was benevolent and good , misery made me a monster . Early in his life the creature smiled sympathetically Victor through his bed curtains . He suffers from neglect. He learns the hard way that it is ugly. he is despised because of its unpleasant appearance. creature does not defend himself Felix . It is good and never kill anyone until he discovers the nature of his creation and how Victor has to leave . The monster seems to represent Adam and Satan first, without conscience, he holds the earth in search f himself , and when he is found, he rebelled against his creator and master. His anger against Victor and his crimes can not be Justified because because he was rejected in his life too . Many times I considered Satan as the fitter emblem of my condition , for often , like him, when I saw the happiness of my protectors, the bitter gall of emy rose within me. It is simply Jealous and angry. I can not agree with what he did , but I can understand his human reasons. In conclusion, the creature is born as Adam. But try to survive with his self-education, it becomes like Satan, because he is a victim.

Monday, November 25, 2019

The treasure in the forest Essay Example

The treasure in the forest Essay Example The treasure in the forest Paper The treasure in the forest Paper Essay Topic: Treasure Island The story takes place during Victorian times at the peak of the BRITISH EMPIRE. The idea of the White British men seeking out new land to colonise, obtain resources and potentially slaves. However this wasnt the goal of this band of explorers, it was to seek out lost Spanish treasure for self gain. The two men were named Evans and Hooker. The location wasnt known as it was virgin land but it was somewhere off China in Pacific Asia. It was isolated and uninhabited, the land was comprised by small and medium sized islands. They span over great distances with minor and vast sized gaps of separation. The explorers entered the barrier of coral surrounding the island through a gap that was a small river. They trailed the river inside to the white sanded beaches they saw a thick forest. This may have been similar sight to the type of palm tree seen by the Victorian explorers in India or somewhere in Africa. The foliage of the trees was similar to a fluffy bright cloud. It created an almost awe inspiring scene, there was a clear view through the virgin forest. The rose like mountains, the beautiful sights, the appearance of the sea was calm and still yet blazing with light. The sun was shining with overt generosity like a zenith furnace, the land of the rising sun. It was silent, the only noise was from the deep blue sea crashing against the coral and the rocks. The air was filled with warm moisture and the cool Pacific sea breeze simultaneously. They were floating into a lagoon while observing the map and discussing it. They were exhausted and didnt feel the exaltation that they were expecting as a reward for the last leg of their endeavour. Hooker was rowing while Evans closed his eyes slightly and fell into a daze. He could see a dark part of the forest and where it was empty he hallucinated. It was nighttime and he saw three figures, a fire burning on one side and moonlight on the other side. The middle figure a cross with red, silver and black in colour. He heard them speaking in pigeon English, this was very strange to him. He saw the Spanish galleon that had run aground and the diseased and weary men take their boats and leave. He then saw Chang-hi come across the Spanish ingots and go away to bury them. This was the secret information Evans needed, the exact location of the treasure. He sees heaps of gold and tries to reach for it but Chang-hi was stopping him and then he threatens Evans. Evans dream becomes irrational as Chang-hi`s pigtail appears in his hand and is getting larger along with the rest of his body. The heaps of gold ablaze in front of his eyes, the very thing he was searching for. Then a giant devil like creature filled his mouth with coals, he was severely burned. He heard another devil shout Evans, Evans you sleepy fool! It was Hooker shouting, they were at the mouth of the lagoon. They got off and onto the bay of the lagoon. Hooker turned the canoe upside down and used it like a knife to cut their way trough the green tangled vines and brushes that surrounded them. The environment they had entered was alien to them in almost every way. The strange trees, tall grass, flowers and plants were all unnamed to them. They saw a figure among the trees, it was in an unnatural position. They both drew nearer, it was a blue coloured chinaman. This was a shock to both as they had a foreboding feeling that this was Chang-chi. They saw a hole was already dug up and thought to themselves about what was here and the fact that some one else had been here already. They went inwards and they discovered the gold ingots, Evans picked them up with his bare hands and got a thorn stuck in his thumb. He didnt realise the danger at the time and continued. They were arguing about what should be done with Chang-chis body, Hooker wanted to bury the body but Evans wanted to just let it stay there. They eventual decided to leave the body and take a few gold ingots as they couldnt take any more weight. They carried the ingots in a stretcher type contraption using Evans jacket. Suddenly Evans let his half of the jacket drop and grabbed his throat, he went against a tree and said, itll be alright in a minute. He cried out in pain and fell to the floor crouching on his side, he was moving rashly and spasmodically. Hooker knew the plant, he had seen a tribe of jungle people use it as poison in their blow darts. Evans told Hooker to take the ingots and get out of there, Hooker packed up the ingots into Evans jacket. While he was doing this he felt a little prick on the ball of his thumb, he pulled the thorn out and endeavoured in vain to suck the poison out, there was nothing he could do for Evans or himself. Hooker never really thought about Chang-chi but he thought what the map had said, my secret is well guarded. Hooker knew finally what he had meant by this and just imagined his grin while looking at his companion. Evans who was twitching like a fish on dry land with its last breath at any moment and Hooker crouched while sitting could do nothing more than become statues of failure in their dire hour.

Friday, November 22, 2019

Strategic Outsourcing Essay Example | Topics and Well Written Essays - 3500 words

Strategic Outsourcing - Essay Example And this is still true today, the two main reasons for outsourcing attested to by a number of scholars   are 1. Improve Company focus, 2. Reduce and control operating costs (Mylot, 1995; Field, 1998; Greaver, 1999; Barthelemy, .2001). However, in recent times, organizations have become increasingly dissatisfied with their outsourcing contracts. An article from the MIT Sloan Management Review (1998) states that a survey by Cap Gemini Ernst & Young found that only 54% of companies are satisfied with their outsourcing, down from more than 80% a decade ago. The landscape of outsourcing has also changed dramatically in the last year with the increased popularity of SOA and raises questions such as 1. How will software vendors react to service-oriented architecture, real-time infrastructure and fusion? 2. How will enterprises achieve value on their investments in software? Similarly how the ESP are going to address to the questions such as 1. Transform their business models from highly c ustom one-to-one services to a one-to-many or many-to-many service model? 2. Effectively partner with ESP’s that are moving or have moved to a leveraged service model.Interestingly enough Gartner predicts that â€Å"by 2007, driven in part by SOA-based Web services, 18 percent of all IT professional services will be deployed in a multi enterprise, shared service environment. Enterprise application vendors are the likely beneficiaries of the SOA bounty when it comes to outsourcing. Vendors such as Oracle and PeopleSoft have grown.

Wednesday, November 20, 2019

The World trade organisation Essay Example | Topics and Well Written Essays - 500 words

The World trade organisation - Essay Example Their mission is to help firms and producers of goods and services, importers and exporters improve their profit.† Advantages WTO has a number of benefits. Firstly, WTO’s trading system encourages peace between nations. In particular, when nations carry out trading with each other without any conflict, they subsequently resolve a number of trading issues and build long-term relationships. This leads to the creation of peace between them. In addition, the trading system also forces enhancement of confidence and teamwork between nations. For example, earlier, people who sell products and services used to hesitate due to trade disputes with their international customers. However, after WTO, the trading has now become a smooth process, and both the seller and the buyer are satisfied with the exchange, leading to a good relationship. In other words, political arguments now occur on a lesser level. An easygoing trade helps nations all around the globe to feel safe. People who are satisfied and successful with international trade are less likely to have fights and disagree with one and another, In other words, wars are less likely to happen between countries. Secondly, the trade system enables effective management and resolution of conflicts and disagreements on international level.

Monday, November 18, 2019

Case Study- Malden Mills Essay Example | Topics and Well Written Essays - 500 words

Case Study- Malden Mills - Essay Example The $25 million payment in payroll was bad for the company because it forced the firm to pay additional debt in the long run which raised the fixed costs of the company (Fina-lib, 2011). A good aspect about the decision was that that company built a reputation with the government, private industry, and general public that helped the company in the future land a $19 million U.S Department of Defense manufacturing apparel contract. My decision after the fire would have been either to retire or to move the operations to a foreign country that offered lower operating costs. Feuerstein did not consider the implications of the potential of losing a lot of customers after the fire. Many of the customers that left could not be recovered because they entered into contractual obligations with other manufacturers. If one of the vision’s of the company was to keep the operation in America I would have followed the firm’s vision, but the operation would have been reopened at a smaller scale through the implementation of a downsizing initiative. The firm would have lost between 20-40% of its employees and under no circumstance would I have turned the firm into a social agency by paying free salaries from the money that should have been used to reconstruct the business. Feuersteins philosophy of human resources was that the employees of the company were the most valuable asset the firm had. Retaining and developing human capital was a top priority of the firm. The company had a human resource philosophy that is aligned with the Japanese philosophy of lifetime employment. Feuerstein’s believed that the well being of the employees was his responsibility. 4. Before the fire, Malden Mills was a privately held company, owned by Feuerstein. After the fire, Feuerstein had to borrow money from different creditors in order to rebuild his business. Please answer the following: The difference between a privately owned company and a publicly owned

Saturday, November 16, 2019

Cutting Fluids and Lubrication in Manufacturing

Cutting Fluids and Lubrication in Manufacturing Importance Of Cutting Fluids And Lubrication In Manufacturing Processes 1. Introduction:- Cutting Fluids:- Cutting Fluid Management for Small Machining Operations iii Cutting fluids have been used extensively in metal cutting operations for the last 200 years. In the beginning, cutting fluids consisted of simple oils applied with brushes to lubricate and cool the machine tool. Occasionally, lard, animal fat or whale oil was added to improve the oils lubricity. As cutting operations became more severe, cutting fluid formulations became more complex. Todays cutting fluids are special blends of chemical additives, lubricants and water formulated to meet the performance demands of the metalworking industry. There are now several types of cutting fluids on the market, the most common of which can be broadly categorized as cutting oils or water-miscible fluids. Water-miscible fluids, including soluble oils, synthetics and semisynthetics, are now used in approximately 80 to 90 percent of all applications. Although straight cutting oils are less popular than they were in the past, they are still the fluid of choice for certain metalworking applications. Cutting fluids play a significant role in machining operations and impact shop productivity, tool life and quality of work. With time and use, fluids degrade in quality and eventually require disposal once their efficiency is lost. Waste management and disposal have become increasingly more complex and expensive. Environmental liability is also a major concern with waste disposal. Many companies are now paying for environmental cleanups or have been fined by regulatory agencies as the result of poor waste disposal practices. Fortunately, cutting fluid life may be extended significantly by implementing an effective fluid management program. The primary objective of fluid management is to maintain fluid quality and performance through administration, monitoring, maintenance and recycling practices. This allows machine shops to make the most cost-effective use of their fluid. It is also the best pollution prevention technology available. Overall, fluid management provides a means to: Operate in a more environmentally sound manner; Improve productivity and reduce costs; Increase competitiveness; Maintain environmental compliance and reduce environmental liability; Consistently manufacture quality products; and Provide a healthier and safer work environment for employees. Proper management of cutting and grinding fluids may also prevent them from being declared a hazardous waste at the end of their useful life. With increasing environmental regulation, a reduction in cutting fluid waste is an economical, practical and achievable goal. Cutting Fluids: (Lubricants + Coolants) Used in machining as well as abrasive machining processes Reduces friction wear Reduce forces and energy consumption Cools the cutting zone Wash away the chips Protect Machined surfaces from environmental corrosion  · The term â€Å"cutting fluids† is used to denote the coolants and lubricants that are used in metal machining and their allied operations like lapping, honing etc. Thin-wall milling of aluminum using a water-based cutting fluid on the milling cutter. Cutting fluids are various fluids that are used in machining to cool and lubricate the cutting tool. There are various kinds of cutting fluids, which include oils, oil-water emulsions, pastes, gels, and mists. They may be made from petroleum distillates, animal fats, plant oils, or other raw ingredients. Depending on context and on which type of cutting fluid is being considered, it may be referred to as cutting fluid, cutting oil, cutting compound, coolant, or lubricant. Every kind of machining (e.g., turning, boring, drilling, milling, broaching, grinding, sawing, shaping, planing, reaming, tapping) can potentially benefit from one kind of cutting fluid or another, depending on work piece material. (Cast iron and brass are usually machined dry. Interrupted cuts such as milling with carbide cutters are usually recommended to be used dry due to damage to the cutters caused by thermo shock). 2. Cutting Fluid Characteristics Functions Of Cutting Fluid The primary function of cutting fluid is temperature control through cooling and lubrication. Application of cutting fluid also improves the quality of the workpiece by continually removing metal fines and cuttings from the tool and cutting zone. Cutting Fluid Management for Small Machining Operations 2 Temperature Control Laboratory tests have shown that heat produced during machining has a definite bearing on tool wear. Reducing cutting-tool temperature is important since a small reduction in temperature will greatly extend cutting tool life. As cutting fluid is applied during machining operations, it removes heat by carrying it away from the cutting tool/workpiece interface . This cooling effect prevents tools from exceeding their critical temperature range beyond which the tool softens and wears rapidly . Fluids also lubricate the cutting tool or work piece interface, minimizing the amount of heat generated by friction. A fluids cooling and lubrication properties are critical in decreasing tool wear and extending tool life. Cooling and lubrication are also important in achieving the desired size, finish and shape of the work piece. No one particular fluid has cooling and lubrication properties suitable for every metalworking application. Straight oils provide the best lubrication but poor cooling capacities. Water, on the other hand, is an effective cooling agent, removing heat 2.5 times more rapidly than oil. Alone, water is a very poor lubricant and causes rusting. Soluble oils or chemicals that improve lubrication, prevent corrosion and provide Other essential qualities must be added in order to transform water into a good metalworking fluid. Removal Of Cuttings And Particulates A secondary function of metalworking fluid is to remove chips and metal fines from the tool/workpiece interface. To prevent a finished surface from becoming marred, cutting chips generated during machining operations must be continually flushed away from the cutting zone. Application of cutting fluid also reduces the occurrence of built-up edge (BUE). BUE refers to metal particulates which adhere to the edge of a tool during machining of some metals. BUE formation causes increased friction and alters the geometry of the machine tool. This, in turn, affects workpiece quality, often resulting in a poor surface finish and inconsistencies in work piece size. Metalworking fluids decrease the occurrence of BUE by providing a chemical interface between the machine tool and work piece. Cutting Fluid Properties In addition to providing a good machining environment, a cutting fluid should also function safely and effectively during machining operations. Corrosion Protection Cutting fluids must offer some degree of corrosion protection. Freshly cut ferrous metals tend to rust Rapidly since any protective coatings have been removed by the machining operation. A good Metalworking fluid will inhibit rust formation to avoid damage to machine parts and the work piece. It will also impart a protective film on cutting chips to prevent their corrosion and the formation of Difficult-to-manage chunks or clinkers. To inhibit corrosion, a fluid must prevent metal, moisture and oxygen from coming together. Chemical metalworking fluids now contain additives which prevent corrosion through formation of invisible, nonporous films. Compounds (such as amines and fatty acids) which form a protective coating on a metals surface, blocking chemical reactions. Passivating films are formed by inorganic compounds containing oxygen (such as borates, phosphates and silicates). These compounds react with the metal surface, producing a coating that inhibits corrosion. Management for Small 3 Cutting Fluid Stability/Rancidity Control In the early days of the industrial revolution, lard oil was used as a cutting fluid. After a few days, lard oil would start to spoil and give off an offensive odor. This rancidity was caused by bacteria and other microscopic organisms that grew and multiplied within the oil. Modern metalworking fluids are susceptible to the same problem. No matter how good the engineering qualities of a coolant, if it develops an offensive odour, it can cause problems for management. The toxicity of a fluid may also increase dramatically if it becomes rancid due to chemical decomposition, possibly causing the fluid to become a hazardous waste. Fluid rancidity shortens fluid life and may lead to increased costs and regulatory burdens associated with fluid disposal. A good cutting fluid resists decomposition during its storage and use. Most cutting fluids are now formulated with bactericides and other additives to control microbial growth, enhance fluid performance and improve fluid stability. Transparency And Viscosity In some operations, fluid transparency or clarity may be a desired characteristic for a cutting fluid. Transparent fluids allow operators to see the workpiece more clearly during machining operations. Viscosity is an important property with respect to fluid performance and maintenance. Lower viscosity fluids allow grit and dirt to settle out of suspension. Removal of these contaminants improves the quality of the fluid recirculating through the machining system. This can impact product quality, fluid life and machine shop productivity. Cutting Fluid Management for Small Machining Operations 4 3. Fluid Selection Oil-Based Fluids including straight oils, soluble oils and ag-based oils Chemical Fluids including synthetics and semisynthetics Fluids vary in suitability for metalworking operations. Petroleum-based cutting oils are frequently used for drilling and tapping operations due to their excellent lubricity while water-miscible fluids provide the cooling properties required for most turning and grinding operations. A. Oil-Based Cutting Fluids Straight Oils (100% Petroleum Oil) Straight oils, so called because they do not contain water, are basically petroleum, mineral, or age-based oils. They may have additives designed to improve specific properties. Generally additives are not required for the easiest tasks such as light-duty machining of ferrous and nonferrous metals. For more severe applications, straight oils may contain wetting agents (typically up to 20% fatty oils) These additives improve the oils wettability; that is, the ability of the oil to coat the cutting tool, workpiece and metal fines. They also enhance lubrication, improve the oils ability to handle large amounts of metal fines, and help guard against microscopic welding in heavy duty machining. For extreme conditions, additives (primarily with chlorine and sulfurized fatty oils) may exceed 20%. These additives strongly enhance the Antiwelding properties of the product. Soluble Oils (60-90% Petroleum Oil) Soluble oils (also referred to as emulsions, emulsifiable oils or water-soluble oils) are generally comprised of 60-90 percent petroleum or mineral oil, emulsifiers and other additives. A concentrate is mixed with water to form the metalworking fluid. When mixed, emulsifiers (a soap-like material) cause the oil to disperse in water forming a stable â€Å"oil-in-water† emulsion . They also cause the oils to cling to the workpiece during machining. Emulsifier particles refract light, giving the fluid a milky, Opaque appearance. ADVANTAGES. Soluble oils offer improved cooling capabilities and good lubrication due to the blending of oil and water. They also tend to leave a protective oil film on moving components of machine tools and resist emulsification of greases and slideway oils. Cutting Fluid Management for Small Machining Operations 6 Soluble oils are a general purpose product suitable for light and medium duty operations involving a variety of ferrous and nonferrous applications. Although they do not match the lubricity offered by straight oils, wetting agents and EP additives (such as chlorine, phosphorus or sulfur compounds) can extend their machining application range to include heavy-duty operations. Most cutting operations handled by straight oils (such as broaching, trepanning, and tapping) may be accomplished using heavy-duty soluble oils. B. Chemical Cutting Fluids Chemical cutting fluids, called synthetic or semisynthetic fluids, have been widely accepted since they were first introduced in about 1945. They are stable, preformed emulsions which contain very little oil and mix easily with water. Chemical cutting fluids rely on chemical agents for lubrication and friction reduction. These additives also improve wettability These compounds react with freshly-machined metal to form chemical layers which act as a solid lubricant and guard against welding during heavy-duty machining operations. Fluids containing EP lubricants significantly Reduce the heat generated during cutting and grinding operations. Synthetics (0% Petroleum Oil) Synthetic fluids contain no petroleum or mineral oil. They were introduced in the late 1950s and generally consist of chemical lubricants and rust inhibitors dissolved in water. Like soluble oils, synthetics are provided as a concentrate which is mixed with water to form the metalworking fluid. These fluids are designed for high cooling capacity, lubricity, corrosion prevention, and easy maintenance. Due to their higher cooling capacity, synthetics tend to be preferred for high-heat, high-velocity turning operations such as surface grinding. They are also desirable when clarity or low foam characteristics are required. Heavy-duty synthetics, introduced during the last few years, are now capable of handling most machining operations. Synthetic fluids can be further classified as simple, complex or emulsifiable synthetics based on their composition. Simple synthetic concentrates (also referred to as true solutions) are primarily used for light duty grinding operations. Complex synthetics contain synthetic lubricants and may be used for moderate to heavy duty machining operations. Machining may also be performed at higher speeds .inning Operations Synthetics are easily separated from the workpiece and chips, allowing for easy cleaning and handling of these materials. In addition, since the amount of fluid clinging to the workpiece and chips is reduced Disadvantages. Synthetic fluids are easily contaminated by other machine fluids such as lubricating oils and need to be monitored and maintained to be used effectively. Semisynthetics (2-30% Petroleum Oil) As the name implies, semisynthetics (also referred to as semi-chemical fluids) are essentially a hybrid of soluble oils and synthetics. They contain small dispersions of mineral oil, typically 2 to 30 percent, in a water-dilutable concentrate . The remaining portion of a semi-synthetic concentrate Semisynthetics are often referred to as chemical emulsions or preformed chemical emulsions since the concentrate already contains water and the emulsification of oil and water occurs during its production. Most semisynthetics are also heat sensitive. Oil molecules in semisynthetics tend to gather around the cutting tool and provide more lubricity. As the solution cools, the molecules redisperse. 4. Mechanisms Of Actions Cooling:- Metal cutting operations involve generation of heat due to friction between the tool and the pieces and due to energy lost deforming the material. The surrounding air alone is a rather poor coolant for the cutting tool, because the rate of heat transfer is low. Ambient-air cooling is adequate for light cuts with periods of rest in between, such as are typical in maintenance, repair and operations (MRO) work or hobbyist contexts. However, for heavy cuts and constant use, such as in production work, more heat is produced per time period than ambient-air cooling can remove. It is not acceptable to introduce long idle periods into the cycle time to allow the air-cooling of the tool to catch up when the heat-removal can instead be accomplished with a flood of liquid, which can keep up with the heat generation. Lubrication At The Tool-Chip Interface:- Besides cooling, cutting fluids also aid the cutting process by lubricating the interface between the tools cutting edge and the chip. By preventing friction at this interface, some of the heat generation is prevented. This lubrication also helps prevent the chip from being welded onto the tool, which interferes with subsequent cutting.  · Delivery Methods:- Every conceivable method of applying cutting fluid (e.g., flooding, spraying, dripping, misting, brushing) can be used, with the best choice depending on the application and the equipment available. For many metal cutting applications the ideal would be high-pressure, high-volume pumping to force a stream of fluid directly into the tool-chip interface, with walls around the machine to contain the splatter and a sump to catch, filter, and recirculate the fluid. This type of system is commonly employed, especially in manufacturing. It is often not a practical option for MRO or hobbyist metalcutting, where smaller, simpler machine tools are used. Active Cutting Oils:- Highly colourised mineral oil Normally black in colour with a pungent smell Oils at above discussed point, diluted with low viscosity mineral oil Lighter in colour. Light transparent mineral oil carrying sulphur or chlorine Light in colour and suitable for even severe cutting conditions. Light transparent mineral oil carrying sulphur or chlorine mixed with sulfurised and chlorinated or fatty oils or acids They find a common application. Inactive Cutting Oils:- The Inactive cutting oils are the straight mineral oils or straight mineral oils mixed with neat fatty oils, acids or sulfurised fatty oils. Among the fatty oils commonly used are lard oil, tallow and some fatty acids. Pastes Or Gels:- Cutting fluid may also take the form of a paste or gel when used for some applications, in particular hand operations such as drilling and tapping. Mists:- Some cutting fluids are used in mist (aerosol) form, although breathing such a lubricant in mist form is a severe and immediate health hazard. Present:- Kerosene, rubbing alcohol, and 3-In-One Oil often give good results when working on aluminium. Lard is suitable for general machining and also press tool work. Mineral oil WD-40 Dielectric fluid is the cutting fluid used in Electrical discharge machines (EDMs). It is usually deionised water or a high-flash-point kerosene. Intense heat is generated by the cutting action of the electrode (or wire) and the fluid is used to stabilise the temperature of the work piece, along with flushing any eroded particles from the immediate work area. The dielectric fluid is nonconductive. Liquid- (water- or petroleum oil-) cooled water tables are used with the plasma arc cutting (PAC) process. Past:- In 19th-century machining practice, it was not uncommon to use plain water. This was simply a practical expedient to keep the cutter cool, regardless of whether it provided any lubrication at the cutting edge-chip interface. When one considers that high-speed steel (HSS) had not been developed yet, the need to cool the tool becomes all the more apparent. (HSS retains its hardness at high temperatures; other carbon tool steels do not.) An improvement was soda water, which better inhibited the rusting of machine slides. These options are generally not used today because better options are available. Lard was very popular in the past. It is used infrequently today, because of the wide variety of other options, but it is still an option. Old machine shop training texts speak of using red lead and white lead, often mixed into lard or lard oil. This practice is obsolete. Lead is a health hazard, and excellent non-lead-containing options are available. From the mid-20th century to the 1990s, 1, 1, 1-trichloroethane was used as an additive to make some cutting fluids more effective. 5. Enviornmental Impact:- Old, used cutting fluid must be disposed of when it is fetid or when it is chemically degraded and has lost its performance. As with used motor oil or other wastes, its impact on the environment should be mitigated. Legislation and regulation specify how this mitigation should be achieved. Enforcement is the most challenging aspect. Modern cutting fluid disposal may involve techniques such as ultra filtration using polymeric or ceramic membranes which concentrates the suspended and emulsified oil phase. 6. Coolants:- A coolant is a fluid which flows through a device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, and chemically inert, neither causing nor promoting corrosion of the cooling system. Some applications also require the coolant to be an electrical insulator. While the term coolant is commonly used in automotive, residential and commercial temperature-control applications, in industrial processing, heat transfer fluid is one technical term more often used, in high temperature as well as low temperature manufacturing applications. The coolant can either keep its phase and stay liquid or gaseous, or can undergo a phase change, with the latent heat adding to the cooling efficiency. The latter, when used to achieve low temperatures, is more commonly known as refrigerant. 1) Gases:- Air is a common form of a coolant. Air cooling uses either convective airflow (passive cooling), or a forced circulation using fans. Hydrogen, the first hydrogen-cooled turbo generator went into service with gaseous hydrogen as a coolant in the rotor and the stator in 1937 at Dayton, Ohio, by the Dayton Power Light Co, because of the thermal conductivity of hydrogen gas this is the most common type in its field today. Inert gases are frequently used as coolants in gas-cooled nuclear reactors. Helium is the most favored coolant due to its low tendency to absorb neutrons and become radioactive. Nitrogen and carbon dioxide are frequently used as well. Sulfur hexafluoride is used for cooling and insulating of some high-voltage power systems (circuit breakers, switches, some transformers, etc.). Steam can be used where high specific heat capacity is required in gaseous form and the corrosive properties of hot water are accounted for. 2) Liquids:- The most common coolant is water. Its high heat capacity and low cost makes it a suitable heat-transfer medium. It is usually used with additives, like corrosion inhibitors and antifreezes. Antifreeze, a solution of a suitable organic chemical (most often ethylene glycol, diethylene glycol, or propylene glycol) in water, is used when the water-based coolant has to withstand temperatures below 0  °C, or when its boiling point has to be raised. Butane is a similar coolant, with the exception that it is made from pure plant juice, and is therefore not toxic or difficult to dispose of ecologically. Very pure deionised water, due to its relatively low electrical conductivity, is used to cool some electrical equipment, often high-power transmitters. Heavy water is used in some nuclear reactors; it also serves as a neutron moderator. Cutting fluid is a coolant that also serves as a lubricant for metal-shaping machine tools. EX:-. Some fast breeder nuclear reactors. Sodium or sodium-potassium alloy NaK are frequently used; in special cases lithium can be employed. Another liquid metal used as a coolant is lead, in EX:- lead cooled fast reactors, or a lead-bismuth alloy. Some early fast neutron reactors used mercury. 7. Lubrication Lubricant:- A lubricant (sometimes referred to as lube) is a substance (often a liquid) introduced between two moving surfaces to reduce the friction between them, improving efficiency and reducing wear. They may also have the function of dissolving or transporting foreign particles and of distributing heat. One of the single largest applications for lubricants, in the form of motor oil, is to protect the internal combustion engines in motor vehicles and powered equipment. Typically lubricants contain 90% base oil (most often petroleum fractions, called mineral oils) and less than 10% additives. Vegetable oils or synthetic liquids such as hydrogenated polyolefin, esters, silicones, fluorocarbons and many others are sometimes used as base oils. Additives deliver reduced friction and wear, increased viscosity, improved viscosity index, resistance to corrosion and oxidation, aging or contamination, etc. Lubricants such as 2-cycle oil are also added to some fuels. Sulfur impurities in fuels also provide some lubrication properties, which have to be taken in account when switching to a low-sulfur diesel; biodiesel is a popular diesel fuel additive providing additional lubricity. Non-liquid lubricants include grease, powders (dry graphite, PTFE, Molybdenum disulfide, tungsten disulfide, etc.), teflon tape used in plumbing, air cushion and others. Dry lubricants such as graphite, molybdenum disulfide and tungsten disulfide also offer lubrication at temperatures (up to 350  °C) higher than liquid and oil-based lubricants are able to operate. Limited interest has been shown in low friction properties of compacted oxide glaze layers formed at several hundred degrees Celsius in metallic sliding systems, however, practical use is still many years away due to their physically unstable nature. Purpose:- Lubricants perform the following key functions:- 1) Keep moving parts apart 2) Reduce friction 3) Transfer heat 4) Carry away contaminants debris 5) Transmit power 6) Protect against wear 7) Prevent corrosion 8) Seal for gasses 9) Stop the risk of smoke and fire of objects General Composition:- Lubricants are generally composed of a majority of base oil and a minority of additives to impart desirable characteristics. Types Of Lubricants:- 1) Gas 2) Liquid including emulsions and suspensions e, natural water repellant) Water Mineral oils Vegetable (natural oil) Synthetic oils Other liquids 3) Solid 4) Greases 5) Adhesive 8. Use And Application Of Cutting Fluids:- Automotive Engine oils Petrol (Gasoline) engine oils Diesel engine oils Automatic transmission fluid Gearbox fluids Brake fluids Hydraulic fluids Tractor (one lubricant for all systems) Universal Tractor Transmission Oil UTTO Super Tractor Oil Universal STOU includes engine Other motors 2-stroke engine oils Industrial Hydraulic oils Air compressor oils Gas Compressor oils Gear oils Bearing and circulating system oils Refrigerator compressor oils Steam and gas turbine oils Aviation Gas turbine engine oils Piston engine oils Marine Crosshead cylinder oils Crosshead Crankcase oils Trunk piston engine oils 9. Components Of Fluid Management Program Administration:- Commit the personnel, equipment and other resources necessary for the program. Encourage employee support and participation. Designate fluid management personnel to implement the program. Survey the fluids, machines and sump capacities of the shop. Develop a record keeping system to track the program. Monitoring And Maintenance Prepare and mix the fluid according to manufacturers directions. Use quality water to dilute fluid concentrate and replenish evaporation losses. Monitor and maintain proper fluid concentration. Monitor for microbial contamination and control microbial growth through water quality control, maintaining proper fluid concentration and pH, routine maintenance of equipment, biocide additions and aeration. Monitor pH for signs of fluid degradation. Perform regular machining system inspections and maintenance practices, particulate removal, tramp oil control, general housekeeping and annual cleanouts. Prevent foaming with proper fluid concentration, quality water and eliminating mechanical effects that agitate cutting fluid. Recycle fluid well before it becomes significantly degraded. Never attempt to recycle rancid fluid. Select fluid recycling equipment based on the needs, objectives and financial resources of the shop. 10. Chemical Treatment:- Chemical treatment is the addition of chemicals which change the nature of the liquid waste. Simple chemical-treatment methods work well on some wastewater. Metalworking wastes are too complex for most treatment processes. Chemical treatment beyond pH control is generally not an option for small facilities. 11. Ultra Filtration System:- Ultra filtration systems were created for the metalworking industry to treat such wastes as used cutting fluids, detergents, parts-washing solutions, and other oily wastewaters. Strict environmental laws require proper treatment prior to discharge. Ultrafiltration systems provide effective treatment of this wastewater by separating the water from the oily waste. The quality of water is then ready for sewer disposal. <

Wednesday, November 13, 2019

Euthanasia Essay -- Philosophy, Immanuel Kant

Euthanasia is an action that result in the death of a person. There are four types of euthanasia, such as voluntary active euthanasia, nonvoluntary active euthanasia, voluntary passive euthanasia, and nonvoluntary passive euthanasia. Among the four types of euthanasia, voluntary active euthanasia or VAE is the most controversial ethical issue in the United States. It is the killing of a competent patient who decided to end his/her suffering by ending his/her life with the help of the physician. VAE is illegal in the Unites States; however, it is morally just. Voluntary active euthanasia is legitimately moral on the basis of Immanuel Kant’s human dignity, the utilitarian’s Greatest Happiness Principle, and James Rachel’s view of active euthanasia. According to Immanuel Kant, a person has dignity that makes him autonomous. Thus, the decision of the autonomous patient to die has intrinsic value. Because patients are rational agent, they are able to make their own decision based on reason. A rational patient will reason that if continued existence is full of suffering and no-hope for better well-being, therefore, the best option is to discontinue his/her life to save him/herself from that future condition. It is the patient’s approach to manage his/her own life. Dan W. Brock is right in his article â€Å"Voluntary Active Euthanasia† when he said that, â€Å"self-determination [or autonomy] has fundamental value†¦ [because]†¦ individual [can] control the manner, circumstances, and timing of their dying and death† (75). The dignity of the patient lies in their â€Å"capacity to direct their lives† (Brock 75). According to Stephen G. Potts, a patient might seek euthanasia for the benefits of other people (79). In his argument against VAE, the p... ...uffer. The voluntary active euthanasia is legitimately moral. It is morally right for a person to seek euthanasia because it is their freedom or autonomy to control their own lives. It ends the suffering of the patient without harming other people. Furthermore, it prevents the person to suffer by giving him/her lethal injection or medication that prevents a person to die slowly with pain. On the other hand, the arguments against euthanasia are not sound. A thorough assessment will protect patient who request euthanasia for the benefits of others. A patient who seek for euthanasia does not use him/herself as means, but as ends to respect his/her own humanity. Furthermore, God as a benevolent will not allow a person to suffer which endorse the purpose of euthanasia – to end suffering. Therefore, voluntary active euthanasia should be legalized in the United States. Euthanasia Essay -- Philosophy, Immanuel Kant Euthanasia is an action that result in the death of a person. There are four types of euthanasia, such as voluntary active euthanasia, nonvoluntary active euthanasia, voluntary passive euthanasia, and nonvoluntary passive euthanasia. Among the four types of euthanasia, voluntary active euthanasia or VAE is the most controversial ethical issue in the United States. It is the killing of a competent patient who decided to end his/her suffering by ending his/her life with the help of the physician. VAE is illegal in the Unites States; however, it is morally just. Voluntary active euthanasia is legitimately moral on the basis of Immanuel Kant’s human dignity, the utilitarian’s Greatest Happiness Principle, and James Rachel’s view of active euthanasia. According to Immanuel Kant, a person has dignity that makes him autonomous. Thus, the decision of the autonomous patient to die has intrinsic value. Because patients are rational agent, they are able to make their own decision based on reason. A rational patient will reason that if continued existence is full of suffering and no-hope for better well-being, therefore, the best option is to discontinue his/her life to save him/herself from that future condition. It is the patient’s approach to manage his/her own life. Dan W. Brock is right in his article â€Å"Voluntary Active Euthanasia† when he said that, â€Å"self-determination [or autonomy] has fundamental value†¦ [because]†¦ individual [can] control the manner, circumstances, and timing of their dying and death† (75). The dignity of the patient lies in their â€Å"capacity to direct their lives† (Brock 75). According to Stephen G. Potts, a patient might seek euthanasia for the benefits of other people (79). In his argument against VAE, the p... ...uffer. The voluntary active euthanasia is legitimately moral. It is morally right for a person to seek euthanasia because it is their freedom or autonomy to control their own lives. It ends the suffering of the patient without harming other people. Furthermore, it prevents the person to suffer by giving him/her lethal injection or medication that prevents a person to die slowly with pain. On the other hand, the arguments against euthanasia are not sound. A thorough assessment will protect patient who request euthanasia for the benefits of others. A patient who seek for euthanasia does not use him/herself as means, but as ends to respect his/her own humanity. Furthermore, God as a benevolent will not allow a person to suffer which endorse the purpose of euthanasia – to end suffering. Therefore, voluntary active euthanasia should be legalized in the United States.